Translator Language

Visitors

Sabtu, 21 Januari 2012

USS Gerald R. Ford CVN-78 (Ship)



CVN-78
CVN-78 artist's depiction.
Career
Name: USS Gerald R. Ford
Namesake: Gerald R. Ford
Awarded: 10 September 2008
Builder: Newport News Shipbuilding
Cost: $13.5 billion[1]
Laid down: 13 November 2009[2]
Sponsored by: Susan Ford[3]
Commissioned: est. 2015
Status: Under construction
General characteristics
Class and type: Gerald R. Ford-class aircraft carrier
Displacement: appx. 100,000 tons
Length: 1,092 ft (333 m)
Beam: 134 ft (41 m)
Propulsion: 2 × A1B reactor
Speed: 30+ knots
Range: Unlimited distance; 20-25 years
Complement: 4,660
Armament: Evolved Sea Sparrow Missile
Rolling Airframe Missile
Close-in weapons system (CIWS)
Aircraft carried: More than 75
PCU Gerald R. Ford (CVN-78) is to be the lead ship of her class of United States Navy supercarriers. As announced by the U.S. Navy on 16 January 2007, the ship will be named after the 38th President of the United States, the late Gerald R. Ford, whose World War II naval service included combat duty aboard the light aircraft carrier Monterey in the Pacific Theater.[4]
The keel of the Gerald R. Ford was laid down on 13 November 2009.[2] Construction began on 11 August 2005, when Northrop Grumman held a ceremonial steel cut for a 15-ton plate that will form part of a side shell unit of the carrier. The schedule calls for the ship to join the U.S. Navy’s fleet in 2015. Gerald R. Ford is slated to replace the current USS Enterprise, ending her then 50-plus years of active service with the United States Navy.[5]

Ship naming


Ford in Navy uniform, 1945
In 2006, while Gerald Ford was still alive, Senator John Warner of Virginia proposed to amend a 2007 defense-spending bill to declare that CVN-78 "shall be named the U.S.S. Gerald Ford."[6] The final version signed by President George W. Bush on 17 October 2006[7] declared only that it "is the sense of Congress that ... CVN-78 should be named the U.S.S. Gerald R. Ford."[8] Since such "sense of" language is typically non-binding and does not carry the force of law,[9] the Navy was not required to name the ship after Ford.
On 3 January 2007, former Secretary of Defense Donald Rumsfeld announced that the aircraft carrier would be named after Ford during a eulogy for the president at Grace Episcopal Church in East Grand Rapids, Michigan.[10] Rumsfeld indicated that he had personally told Ford of the honor during a visit to Ford's home in Rancho Mirage a few weeks before Ford's death. This makes the aircraft carrier one of the few U.S. ships named after someone still alive. Later in the day, the Navy confirmed that the aircraft carrier would indeed be named for the former President.[11] On 16 January 2007, Navy Secretary Donald Winter officially named CVN-78 the USS Gerald R. Ford. Ford's daughter, Susan Ford Bales, was named the ship's sponsor. The announcements were made at a Pentagon ceremony attended by Vice President Dick Cheney, Senators Warner and Levin, Major General Guy C. Swan III, Bales, Ford's other three children, and others.[12]
USS America Carrier Veterans Association (CVA) had pushed to name the ship USS America. The CVA is an association of sailors who served aboard USS America (CV-66), which was decommissioned in 1996 and scuttled in the Atlantic as part of a classified weapons damage/battle damage test of large deck aircraft carriers in 2005.[13] (America will instead be the name of the lead ship of a new class of amphibious assault ships).

Design and development

The Nimitz-class aircraft carrier has been an integral part of United States power projection strategy since Nimitz was first commissioned. Displacing approximately 100,000 tons when fully loaded, a Nimitz-class carrier is capable of steaming faster than thirty knots, self-sustaining for up to ninety days, and launching aircraft to strike targets hundreds of miles away.[14] The endurance of this class is exemplified by USS Theodore Roosevelt, which spent 159 days underway in support of Operation Enduring Freedom without the need to visit a port or be refueled.[15] Over the lifespan of the class many new technologies have been successfully integrated into the design of this vessel. However, with the technical advances made in the past decade the ability of the US Navy to make improvements to this class of ship has become more limited. “The biggest problems facing the Nimitz-class are the limited electrical power generation capability and the upgrade-driven increase in ship weight and erosion of the center of gravity margin needed to maintain ship stability.”[16]
With these constraints in mind the Navy developed what was initially known as the "CVN-21" program, which ultimately evolved into CVN-78, Gerald R. Ford. Improvements were made through developing technologies and more efficient design. Major design changes include a larger flight deck, improvements in weapons and material handling, a new propulsion plant design that requires fewer personnel to operate and maintain, and a new smaller island that has been pushed aft. Technological advances in the field of electromagnetics have led to the development of an Electromagnetic Aircraft Launching System, (EMALS), and an Advanced Arresting Gear, (AAG). An integrated warfare system has been developed to support flexibility in adapting the infrastructure of the ship to future mission roles. The new Dual Band Radar (DBR) combines S-band and X-band radar in a single system.[17] With new design and technology the Ford will have a 25% increase in sortie generation, threefold increase in electrical generating capacity, increased operational availability, and a number of quality of life improvements.[18] Requirements for a higher sortie rate of around 160 exits a day with surges to a maximum of 220 sorties a day in times of crisis and intense air warfare activity, has led to design changes in the flight deck, which enable greater aircraft launch capabilities.

Flight deck

Changes to the flight deck are the most visible of the differences between the Nimitz and Gerald R. Ford classes. Several sections have been altered from the layout of the Nimitz class flight deck to improve aircraft handling, storage, and flow. Catapult number four on the Nimitz class cannot launch fully loaded aircraft because of a deficiency of wing clearance along the edge of the flight deck.[19] CVN-78 will have no catapult-specific restrictions on launching aircraft, but still retains 4 catapults, 2 bow and 2 waist,[20] and the number of aircraft lifts from hangar deck to flight deck level is also reduced from the earlier ships from 4 to 3. The design changes to the flight deck are instrumental in the maximization of sortie generation.
The route of weapons to the aircraft stops on the flight deck has been replanned to accommodate higher re-arming rates, and in turn higher potential sortie rates.
Another major change: a smaller, redesigned island will be pushed further back relative to the older classes of carriers. Moving the island creates deck space for a centralized re-arming and re-fueling location. This reduces the number of times that an aircraft will have to be moved after landing before it can be launched again. Fewer aircraft movements require, in turn, fewer deck hands to accomplish them, reducing the size of the ship's crew. A similar benefit is realized by altering the path and procedures for weapons movement by redshirts from storage to flight deck, again potentially allowing the new ship to support a higher sortie rate than the Nimitz class ship while using fewer crew members than the Nimitz requires. On Nimitz-class carriers the time that it takes to launch a plane after it has landed is defined by the time necessary to re-arm and re-fuel. To minimize this time, ordnance will be moved by robotic devices from storage areas to the centralized re-arming location via re-located weapons elevators. The new path that ordnance follows does not cross any areas of aircraft movement, thereby reducing traffic problems in the hangars and on the flight deck. According to Rear Admiral Dennis M. Dwyer these changes will make it theoretically possible to re-arm the airplanes in "minutes instead of hours."[21]

Power generation

The propulsion and power plant of the Nimitz-class carriers was designed in the 1960s. Technological capabilities of that time did not require the same quantity of electrical power that modern technologies do. "New technologies added to the Nimitz-class ships have generated increased demands for electricity; the current base load leaves little margin to meet expanding demands for power."[22] Increasing the capability of the U.S. Navy to improve the technological level of the carrier fleet required a larger capacity power system.
The new A1B reactor plant is a smaller, more efficient design that provides approximately three times the electrical power of the Nimitz-class A4W reactor plant. The modernization of the plant led to a higher core energy density, lower demands for pumping power, a simpler construction, and the use of modern electronic controls and displays. These changes resulted in a two thirds reduction of watch standing requirements and a significant decrease of required maintenance.[23]
A larger power output is a major component to the integrated warfare system. Engineers took extra steps to ensure that integrating unforeseen technological advances onto a Gerald R. Ford-class aircraft carrier would be possible. The Gerald R. Ford-class will be an integral component of the fleet for a total of nearly ninety years. One lesson learned from that is that for a ship design to be successful over the course of a century, a great deal of foresight and flexibility is required. Integrating new technologies with the Nimitz class is becoming more difficult to do without any negative consequences. To bring the Gerald R. Ford class into dominance during the next century of naval warfare requires that the class be capable of seamlessly upgrading to more advanced systems.

[edit] Launch systems

The Nimitz-class aircraft carriers use steam-powered catapults to launch aircraft. Steam catapults were developed in the 1950s and have been exceptionally reliable. For over fifty years at least one of the four catapults has been able to launch an aircraft 99.5% of the time.[24] However, there are a number of drawbacks. “The foremost deficiency is that the catapult operates without feedback control. With no feedback, there often occurs large transients in tow force that can damage or reduce the life of the airframe.”[25] The steam system is massive, inefficient (4–6%),[26] and hard to control.
Control problems with the system results in minimum and maximum weight limits. The minimum weight limit is above the weight of all UAVs. An inability to launch the latest additions to the Naval Air Forces is a restriction on operations that cannot continue into the next generation of aircraft carriers. The Electromagnetic Aircraft Launch System (EMALS) provides solutions to all these problems. An electromagnetic system is more efficient, smaller, lighter, more powerful, and easier to control. Increased control means that EMALS will be able to launch both heavier and lighter aircraft than the steam catapult. Also, the use of a controlled force will reduce the stress on airframes, resulting in less maintenance and a longer lifetime for the airframe. Unfortunately the power limitations for the Nimitz class make the installation of the recently developed EMALS impossible.
Electromagnetics will also be used in the new Advanced Arresting Gear (AAG) system. The current system relies on hydraulics to slow and stop a landing aircraft. While effective, as demonstrated by more than fifty years of implementation, the AAG system offers a number of improvements. The current system is unable to capture UAVs without damaging them due to extreme stresses on the airframe. UAVs do not have the necessary mass to drive the large hydraulic piston used to trap heavier manned planes. By using electromagnetics the energy absorption is controlled by a turbo-electric engine. This makes the trap smoother and reduces shock on airframes. Even though the system will look the same from the flight deck as its predecessor, it will be more flexible, safer, more reliable, and require less maintenance and manning.[27]

Communications

Another addition to Gerald R. Ford class is an integrated search & tracking radar system. The Dual-band radar is being developed for both the DDG 1000 Zumwalt class of guided missile destroyers and the Gerald R. Ford class of aircraft carriers. The island can be kept smaller by replacing six to ten radar antennas with a single six-faced radar. The DBR works by combining the X-Band AN/SPY-3 Multi-Function Radar with the S-Band Volume Search Radar.[28] The three faces dedicated to the X-band radar are responsible for low altitude tracking and target illumination, while the other three faces dedicated to the S-band are responsible for target search and tracking regardless of weather. “Operating simultaneously over two electromagnetic frequency ranges, the DBR marks the first time this functionality has been achieved using two frequencies coordinated by a single resource manager.”[17] This new system has no moving parts, therefore minimizing maintenance and manning requirements for operation.

Possible upgrades

Each new technology and design feature integrated into the Ford-class aircraft carrier improves sortie generation, manning requirements, and operational capabilities. Preparing for the future is a trademark of Gerald R. Ford. New defense systems, such as free electron laser directed-energy weapons, dynamic armor, and tracking systems will require more power. “Only half of the electrical power-generation capability on CVN 78 is needed to run currently planned systems, including EMALS. CVN 78 will thus have the power reserves that the Nimitz class lacks to run lasers and dynamic armor.”[29] The addition of new technologies, power systems, design layout, and better control systems results in an increased sortie rate of 25% over the Nimitz class and a 25% reduction in manpower required to operate.[30]
Breakthrough waste management technology will be deployed on the new Gerald R. Ford. Co-developed with the US Navy, PyroGenesis Canada Inc, in 2008, was awarded the contract to outfit the ship with a Plasma Arc Waste Destruction System (PAWDS). This compact system will treat all combustible solid waste generated onboard the ship. After having completed factory acceptance testing in Montreal, the system is scheduled to be shipped to the Huntington Ingalls shipyard in late 2011 where it will be installed on the carrier.[31]

Construction

On 10 September 2008 the US Navy signed a $5.1 billion contract with Northrop Grumman Shipbuilding in Newport News, Virginia, to design and construct the carrier. Northrop had begun advance construction of the carrier under a $2.7 billion contract in 2005. The carrier is being constructed at the Northrop Grumman Newport News shipbuilding in Hampton Roads, Virginia, which employs 19,000 workers.[32]
The keel of the new warship was ceremonially laid on November 14, 2009 in Dry Dock 12[33] by Ford's daughter, Susan Ford Bales. Said Bales in a speech to the assembled shipworkers and DoD officials, "Dad met the staggering challenges of restoring trust in the presidency and healing the nation's wounds after Watergate in the only way he knew how — with complete honesty and integrity. And that is the legacy we remember this morning."[34]
As of August 2011, the carrier was reported to be approximately "half completed."

0 komentar:

Posting Komentar

Popular Posts